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Abstract

Reconstructing dynamic assets from video data is central
to many in computer vision and graphics tasks. Existing 4D
reconstruction approaches are limited by category-specific
models or slow optimization-based methods. Inspired by the
recent Large Reconstruction Model (LRM) [15], we present
the Large Interpolation Model (LIM), a transformer-based
feed-forward solution, guided by a novel causal consis-
tency loss, for interpolating implicit 3D representations
across time. Given implicit 3D representations at times t0
and t1, LIM produces a deformed shape at any continu-
ous time t ∈ [t0, t1], delivering high-quality interpolated
frames in seconds. Furthermore, LIM allows explicit mesh
tracking across time, producing a consistently uv-textured
mesh sequence ready for integration into existing produc-
tion pipelines. We also use LIM, in conjunction with a
diffusion-based multiview generator, to produce dynamic
4D reconstructions from monocular videos. We evaluate
LIM on various dynamic datasets, benchmarking against
image-space interpolation methods (e.g., FiLM [41]) and
direct triplane linear interpolation, and demonstrate clear
advantages. In summary, LIM is the first feed-forward
model capable of high-speed tracked 4D asset reconstruc-
tion across diverse categories. Video results and code are
available via the project page.

1. Introduction

Reconstructing dynamic 4D assets from video data is a fun-
damental problem in computer vision and graphics, with
many virtual and augmented reality applications. Existing
4D reconstructors follow two main paradigms: category-
specific articulated reconstruction and image-or-text condi-
tioned 4D distillation. Hence, they are either restricted to a
specific class of objects such as humans [32] and animals
[3, 44], or are optimization-based [42, 63] making them
slow, requiring minutes to hours per reconstruction.

Recently, in the context of static reconstruction, the large
reconstruction model (LRM) [16] has been proposed as an
elegant feed-forward network that, starting from a fixed rig
of multiview images, directly produces 3D implicit repre-
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Figure 1. Large Interpolator Model (LIM) outputs a 4D video
reconstruction by interpolating 3D implicit representations be-
tween two consecutive keyframes at times t = 0 and t = 1, which
can then be used to produce 3D-consistent RGB, depth, or decoded
as tracked mesh sequences.

sentation, which can then be rendered for novel view gen-
eration. In this work, in the context of dynamic recon-
struction, we ask if a similar feed-forward approach can be
developed to reconstruct a tracked explicit representation
across time.

Here, L4GM [43] proposed a feedforward 4D video re-
constructor which, for each video keyframe, accepts few
views of the reconstructed object and outputs a mixture
of 3D Gaussian Splats [23]. However, this approach has
limitations as it can only reconstruct the keyframes at their
exact timesteps without the ability to interpolate the shape
through time. Additionally, establishing correspondences
between Gaussian mixtures from different timesteps is chal-
lenging, which complicates tracing the deformation of the
underlying object geometry through time. This limitation
hinders many important downstream applications, such as
gaming, where we require tracked meshes in the form of
the 3D shape and texture of a single mesh to be defined in a
static canonical pose, with only its geometry (i.e., vertices)
allowed to be deformed across time.

We thus present Large Interpolation Model (LIM) as a
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transformer-based feed-forward solution that accepts an im-
plicit representation of an object at two different keyframe
times t0 and t1 of a video, and interpolates between the two
at any continuous intermediate timestep t ∈ [t0, t1]. We
enable this with a novel self-supervised causal consistency
loss that allows us to meaningfully interpolate continuously
in time, even when supervised with keyframes from distinct
time stamps. LIM is not only an efficient interpolator, but
can also track a source mesh across time producing a func-
tional deformable 3D asset with a shared uv texture map.
Here, LIM tracks the mesh by means of an additional vol-
umetric function that maps each time-specific 3D implicit-
surface point to a unique coordinate on the intrinsic (time-
invariant) surface of the object. This is unique – unlike any
other competing dynamic reconstructor [43], LIM outputs
a mesh with time-invariant texture and topology, and time-
dependent vertex deformation. This renders LIM directly
applicable in existing production setups.

Our LIM module also enables dynamic reconstruction
from monocular video. Specifically, given keyframes of a
monocular video, a pretrained image diffusion model gen-
erates additional object views which, using a multiview
LRM, we convert to keyframe-specific implicit 3D repre-
sentations. Then, LIM directly interpolates the 3D repre-
sentations yielding a dynamic 4D asset.

Our experiments demonstrate that LIM outperforms ex-
isting alternatives in terms of the overall quality of the
implicit-shape interpolations while being several times
faster. Furthermore, we also evaluate the quality of the
mesh tracing, where LIM records significant performance
improvements.

2. Related Work
3D Reconstruction. Early work, introduced by Dream-
Fusion [39] optimizes a 3D scene via score distillation
sampling from a pretrained text-to-image diffusion model
[35, 40, 48]. However, these methods are slow to opti-
mize and suffer from inconsistencies (like the Janus prob-
lem). Zero123 [45] learns to condition diffusion models
on a single-view image and camera transformation, which
allows novel view generation. Multiple novel views of
a single object can then be used to optimize a NeRF re-
construction which, however, is often impaired by view-
inconsistencies of the novel-view generator. SyncDreamer
[31] proposes an extension that improves the consistency of
novel views and transitivelly of the generated 3D shapes.
Due to the highly-challenging task of reconstructing any
3D asset from a single image, several works [13, 14, 19–
21, 25, 26, 28, 28, 29, 52, 55, 56, 60] learn 3D recon-
structors of a specific category which simplifies learning of
shape, deformation, and appearance priors. We also note
some works on learning a generalizable dynamic radiance
field from monocular videos [47, 49] which, however, are

not designed for outputting a time-deforming 3D mesh. Re-
cent methods [15, 53], trained on large 3D datasets such
as Objaverse [9, 10], propose feed-forward reconstructors
which directly predict 3D representation of an object, con-
ditioning on a single or multiple views. These methods dra-
matically reduce reconstruction speed as they don’t rely on
any optimization loop.

4D Representations. Extending the popular research on
representing static 3D scenes with implicit shapes, recent
works proposed new time-deforming alternatives. Dynerf
[12] extends static neural radiance field [36] with an addi-
tional compact latent code to represent time deformation.
However, similar to the static implicit shape reconstruc-
tors [36, 61], its optimization process is relatively slow.
[4, 8, 11] factorize a dynamic representation into multiple
low-rank components, which dramatically speeds up the op-
timization. Notably, Hexplane [4] proposes a 6-plane repre-
sentation which extends the spacial triplane representation
[7] to a spatio-temporal one. With the emergence of 3D
Gaussian Splatting [22] (3DGS), [34, 54] propose its ex-
tension to dynamic scenes, relying either on a per-frame op-
timization with dynamic constraints, or on a temporal net-
work to deform the gaussians in time.

4D Generation and Reconstruction. Several works focus
on text-to-4D generation: MAV3D [46] optimizes a Hex-
plane [4] representation via score distillation sampling from
a text-to-image and a text-to-video diffusion model. 4Dify
[2] introduces a 3D-aware text-to-image diffusion model,
and parameterizes the representation with a multi-resolution
hash encoding [37]. However, these methods tend to pro-
duce very limited and simple motions. TC4D [1] proposes
an extension to decompose movement into local deforma-
tion and global rigid motion. [30] applies same SDS super-
vision with Gaussian splatting.

Similar to us, recent work focused on video-to-4D re-
construction. Consistent4D [18] generates 4D content from
monocular video via SDS supervision, optimizing a Cas-
cade DyNerf [12]. Simiarly, 4DGen [62] and DreamGaus-
sian4D [42] encode the 4D asset as a set of static 3D gaus-
sians and a regularized deformation field. [38, 64] leverages
diffusion models to generate frames across views and times-
tamps, and optimizes a dynamic gaussian splats based on
these frames. [17, 57] decompose motion and appearance
in gaussian splatting: instead of predicting a deformation
for each gaussian in a canonical frame, they deform Gaus-
sians by means of sparse control points. All above methods
are relatively slow due to the 2nd reconstruction stage that
optimizes each 4D asset from scratch. Furthermore, these
methods cannot easily trace the resulting 4D asset through
time, which prohibits their application in production setups.



Figure 2. LIM framework. (Left) Given multi-view images on 2 timesteps k and k + 1, LIM interpolates any intermediate 3D rep-
resentation at k + α, α ∈ [0, 1]. It achieves this notably via cross-attention with the latest intermediate features of LRM on keyframe
k. In practice, our LIM architecture has 6 blocks and LRM 12 blocks. (Right) Block structure of LRM and LIM. We include layer
normalization before each module in blocks.

3. Method

In Sec. 3.1, we review the LRM [15] architecture which
our method is based on; in Sec. 3.2, we introduce LIM,
our large interpolator model, for efficient 3D interpolation
and; in Sec. 3.4, we show how LIM can be used for fast 4D
reconstruction and mesh tracking.

3.1. Preliminaries
Our Large Interpolation Model (LIM) is built upon the
multi-view version of Large Reconstruction Model (LRM)
[15]. We first review LRM and its multi-view version.

LRM. The LRM [15] is a single-view reconstructor. Given
a source image Isrc and its camera πsrc, LRM reconstructs
a triplane [7] representation T := LRMθ(I, π) of the de-
picted scene. The triplane may be rendered from any target
view πtgt using Emission-Absorption raymarching yielding
an RGB render R(πtgt, T ), depth render R(πtgt, T )D and
alpha-mask render R(πtgt, T )α. In practice, we use the
Lightplane renderer [5] to implement R.

In a single-view setting, 3D reconstruction is highly am-
biguous. Indeed, as depicted in Fig. 3, when applied to re-
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Figure 3. LRM conditioned on a single-view [50] is sensitive to
small changes on the input image, which gives inconsistent result
from one video frame to another. The multi-view LRM prevents
this instability. For each model, left shows an input-view, right
shows two target views. Each line is a different timestep.

construct monocular-video frames, LRM outputs triplanes
with significantly time-inconsistent shape and texture.

Multi-view LRM setup. Hence, in order to minimize re-
construction ambiguity, we leverage a few-view condi-
tioned version of LRM. Formally, given a set Isrc :=
{Iisrc}N

src

i=1 of N src source images with corresponding cam-
eras Πsrc := {πisrc}N

src

i=1 we predict a triplane T :=
LRMθ(Isrc,Πsrc), where we overload the same symbol for
the multi-view and single-view versions for compactness.
The architecture follows [27, 59] – the pixels of each source
image Isrc are first concatenated with the Plucker ray coor-
dinates encoding the corresponding camera pose πsrc and
then fed to DinoV2 [6] yielding image tokens. Then, these
tokens enter cross-attention layers inside a large 12-layer
transformer that refines a set of fixed shape tokens into the
final triplane representation T of the reconstructed scene.

Multi-view LRM training. We train LRM in a fully-
supervised manner on a large dataset of artist-created
meshes, similar to Objaverse [10]. We render each mesh
from a set of pre-defined camera viewpoints Π. The lat-
ter rendering, besides the RGB image I , also provides the
ground-truth depth map D and the alpha mask M . For each
training scene, we sample Nsrc = 4 random images as input
views, and render into Ntgt = 4 randomly sampled held-out
target views where losses are optimized.

We optimize three losses. (i) The photometric loss
Lphoto :=

∑Ntgt
i=1 ∥Ii−R(πi, T )∥2+LPIPS(Ii, R(πi, T ));

(ii) mask loss Lmask :=
∑Ntgt
i=1 BCE(M

i, R(πi, T )α),
where BCE is binary cross-entropy; and (iii) depth loss
Ldepth :=

∑Ntgt
i=1 ∥Di − R(πi, T )D∥. Recall that T :=

LRMθ(Isrc,Πsrc) is the triplane output by LRM given the 4
source views. The total loss Lphoto +Ldepth +Lmask is mini-
mized with the Adam optimizer [24] with a learning rate of
10−4 until convergence.



3.2. LIM: Large Interpolator Model
Given a monocular video, our aim is to predict the 3D repre-
sentation of the scene at any continuous timestep. Further-
more, we aim to achieve this in a feed-forward manner, and
we require the ability to trace the 3D representation in time,
which eventually yields a practically applicable animated
mesh with a shared UV texture.

Multi-view LIM. As mentioned in Sec. 3.1, reconstructing
monocular videos is a highly ambiguous task and, hence,
we first focus on the simpler multi-view version with access
to multiple views at each timestep. At the end of this sec-
tion, we describe how to tackle the harder monocular task
by converting it to the multi-view setting described here.

Formally, we are given a multi-view RGB video
{Ik}k∈(1,2,...,Nf ) composed of Nf timesteps where, for
each integer timestep k, we have a set Ik = {Iik}

Nv
i=1 of

Nv view-points with cameras Πk = {πik}
Nv
i=1. In order to

4D-reconstruct the latter we can, in principle, use LRM to
predict a set {Tk}k∈(1,2,...,Nf ) containing a triplane for each
keyframe in the video. However, the latter remains discrete
in time and, hence, we cannot obtain a 3D representation
at any intermediate continuous timestep k + α, α ∈ [0, 1].
Furthermore, such frame-specific triplanes encode implicit
shapes disconnected across different timesteps. This pre-
vents us from converting the time-series of reconstructions
into a time-varying mesh.

Thus, to achieve continuous reconstruction in time, and
to enable surface tracking, we introduce our Large Interpo-
lator Model (LIM). Given 2 keyframe sets Ik, Ik+1 at dis-
crete timesteps k and k+1, LIM predicts an interpolated tri-
plane T̂k+α at any continuous timestep t = k+α, α ∈ [0, 1]:

T̂k+α := LIMψ(Fk(Ik,Πk), Ik+1, α). (1)

The architecture of LIM, illustrated in Fig. 2, takes advan-
tage of the pretrained multiview LRM model from Sec. 3.1.
More specifically, we begin by calculating the intermediate
features Fk as predicted by LRM from the frame set Ik at
the start timestep k. These features are extracted after each
of the last L = 6 transformer blocks of LRM. Then, we
broadcast and concatenate a positional encoding of the in-
terpolation time α to Fk and feed the result to LIM. This
input is then refined by series of cross-attentions with the
image tokens of the next keyframes Ik+1 to predict the fi-
nal interpolated triplane T̂k+α.

3.3. Training LIM

We train LIM on a large dataset of artist-created meshes an-
imated with a range of motions. For each scene, we render
the asset from several random viewpoints at each key-frame
of the animation.

In order to train LIM, for each scene, we first sample a
pair of keyframe interpolation endpoints at timesteps ksrc

and ktgt such that ktgt − ksrc ∈ {2, 3, 4}. Then, we ad-
ditionally sample a middle keyframe km such that ksrc ≤
km ≤ ktgt. We then task LIM to predict the interpolated
triplane T̂ksrc+αm

:= LIM(Fksrc , Iktgt , αm) at an interme-
diate keyframe km given the source and target condition-
ing Fksrc , Iktgt and the interpolation time αm = km−ksrc

ktgt−ksrc
,

which converts the discrete timestep km into a continuous
interpolation time αm ∈ [0, 1]. The interpolated triplane
T̂ksrc+αm

is then compared to the pseudo-ground-truth tri-
plane Tkm = LRM(Ikm ,Πkm) output by LRM at the in-
terpolated keyframe km with the following MSE loss:

LT := ∥T̂ksrc+αm
− Tkm∥2, αm =

km − ksrc

ktgt − ksrc
. (2)

Causal consistency for continuous-time interpolation.
The loss LT provides a basic supervisory signal which,
however, only supervises LIM at keyframe times km that
are discrete. The latter prevents the model from becom-
ing a truly temporally-smooth interpolator because, during
training, it is never exposed to arbirary interpolation times
α spanning the whole continuous range of [0, 1].

To address this, we introduce a causal consistency loss
Lcausal. In a nutshell, the loss enforces that a triplane inter-
polated directly from time ksrc to ksrc + δ, δ ∈ [0, 1] has to
match a triplane that is first interpolated to an arbitrary in-
termediate timestep ksrc + αrand, αrand ∈ U(0, δ) and then
further interpolated to the target timestep ksrc + δ.

More formally, we define the causal consistency loss as:

Lcausal :=

∥∥∥∥LIM(
F̂ksrc+αrand , Iksrc+δ,

δ − αrand

1− αrand

)
− T̂ksrc+δ

∥∥∥∥2 ,
(3)

where F̂ksrc+αrand stands for the intermediate features pre-
dicted by LIM when interpolating from ksrc to ksrc + αrand.
Note that we feed into the second LIM pass the interme-
diate features F̂ksrc+αrand output by LIM as opposed to fea-
tures F output by LRM as prescribed by the original LIM
formulation in (1). We empirically observed that this works
as we can assume that the intermediate features of LIM fol-
low approximately the same distribution as the intermediate
features of LRM. Hence, LIM can, in a recurrent manner,
accept its own intermediate features to ground the interpo-
lation of the next timesteps. As demonstrated in Sec. 4.1
(Tab. 4), the causal loss Lcausal significantly improves the
temporal consistency and the quality of the interpolations.

Note that for LIM training, LRM model weights θ are
already optimized and we keep them frozen. We minimize
the total loss LT + Lcausal using the Adam optimizer [24]
with a learning rate of 10−4 until convergence.

Monocular 4D reconstruction. Given the trained LIM
and LRM models, we can now predict the 3D scene rep-
resentation at any continuous timestep. However, as men-



tioned above, the LIM model relies on multiple views at
each timestep, which are not always available in practice.

Our method can, however, also be used in the monocular-
video to 4D setting. Here, we leverage a pretrained diffu-
sion model [58] to recover 3 videos at different viewpoints,
consistent in shape and motion with the monocular source.
We then reconstruct 3D per timestep with LRM, and add in-
between timesteps (depending on the user frame-rate need),
by interpolating with LIM. This replaces the optimization
of a 4D representation from the multi-view videos [2, 46],
which in practice takes minutes to hours for a single scene.

3.4. Tracing shapes with LIM

In Secs. 3.2 and 3.3, we have described how LIM, together
with LRM, can be trained to predict a continuous-time 3D
representation of a scene given a set of multi-view images at
discrete timesteps. As mentioned before, a key goal of our
model is to also trace the deformable shape through time.
Next, we describe how to extend LIM and LRM to output
canonical surface coordinates to enable surface tracing, and
how to use these coordinates to output a time-deforming
mesh with fixed topology and texture.

Interpolating canonical surface coordinates. To simplify
the surface tracing task, we extend LIM and LRM to label
the interpolated implicit surface with intrinsic coordinates
defined in the canonical coordinate of the object to be in-
terpolated. More specifically, aside from tasking the inter-
polated triplanes T with representing the RGB color and
geometry of the implicit shape, we also task them with sup-
porting a volumetric function f : R3 → R3 that maps each
point in the 3D space to its canonical surface coordinate.
Without loss of generality, we set the canonical coordinates
of time-deforming shape to the XYZ coordinates of the cor-
responding surface points in the start timestep ksrc. Since
we have a dataset of artist-created meshes with a known de-
formation of each vertex in time, we can easily calculate the
canonical coordinate function fksrc of each vertex at the start
timestep ksrc and then transport those using the known an-
imation to any other deformation time ktgt yielding a func-
tion fktgt . Importantly, f can be rendered at any point in
time from a viewpoint πi yielding a 3-channel canonical
coordinate render Ci.

Given the above, we train a second LRM, dubbed LRM,
which shares the same architecture, but predicts triplanes
T C := LRM(Csrc,Πsrc) supporting the coordinate function
f , by accepting a set Csrc := {Ci

src}
Nsrc
i=1 of multi-view source

canonical renders Ci
src. This canonical-coordinate LRM is

supervised with the following canonical loss:

Lcan := ∥Ci
src −R(πi, T C

src)∥2, (4)

and with the same depth, and mask losses as the LRM
in Sec. 3.1. Similarly, we train LIM to interpolate the

canonical-coordinate triplane as,

T̂ C
src := LIM(FC

ksrc
, Iksrc , Iktgt , α). (5)

Note that this LIM, analogous to LIM, is conditioned on
the features FC

ksrc
of the canonical-coordinate LRM. How-

ever, differently from LIM, LIM accepts target and source
RGB frames Iksrc and Iktgt instead of the target-time canon-
ical image Cktgt . This is because the canonical coordinates
can only be carried forward in time and, as such, are not
available for the target timestep ktgt. Hence, LIM instead
learns how to propagate the coordinates by analyzing the
RGB frames that are available in both timesteps. We super-
vise LIM with the MSE loss LCT and the causal consistency
loss LCcausal that are defined analogously to (2) and (3) but
with the canonical-coordinate triplanes T C and images C.

Mesh tracing. Given the RGB and canonical-coordinate
versions of LIM and LRM, we can trace a mesh multi-view
frames Isrc and Itgt (recall that, using an image diffusion
model, this is also possible for a monocular video).

We start by extracting the color triplane Tksrc at timestep
ksrc with LRM. We then render Tksrc to obtain a depth map
Dksrc that we unproject to form 3D points yielding the multi-
view canonical coordinates Cksrc . Given Cksrc , we can predict
the canonical-coordinate triplane T C

ksrc
with LRM.

Then, for a series of monotonic time offsets
α0, . . . , αN ; |αj+1 − αj | → 0 the canonical coordi-
nate triplane T C

ksrc
, together with Isrc and Itgt, is fed to LIM

to interpolate the canonical-coordinate triplane T̂ C
ksrc+αj

at
all continuous timesteps ksrc + αj .

The series of resulting canonical-coordinate triplanes
T̂ C
ksrc+αj

provides a series of implicit shapes annotated with
surface coordinates. To obtain a time deforming mesh, we
first run Marching Cubes (MC) [33] on the first triplane
T̂ C
ksrc+α0

resulting in a mesh Mksrc+α0(Vksrc+α0 , F ) with
time-dependent vertices Vksrc+α and time-invariant faces F .
We then run MC on the next triplane T̂ C

ksrc+α1
and match

the vertices of the previous mesh to the surface on the
next mesh using nearest neighbor search in the space of
canonical coordinates defined by the triplanes T̂ C

ksrc+α0
and

T̂ C
ksrc+α1

, respectively. Afterwards, we replace the vertices
Vksrc+α0 with the corresponding nearest neighbors from the
next time ksrc + α1, and repeat the process for all the re-
maining timesteps α2, . . . , αN

4. Experiments
4.1. Feed-forward Triplane Interpolation
In this section, we evaluate the ability of LIM to interpolate
triplanes so that the renders of the latter match the ground-
truth views extracted at the target interpolation timestep.
More specifically, given a multi-view video of a deform-
ing object, which contains the frame set {Ik}

Nf

k=1 at each
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Figure 4. Interpolation results comparing (i) linear interpolation in triplane space, which fails on dynamic parts; (ii) image-based interpo-
lator [41] (FILM), yielding view-consistent frame interpolations leading to defective reconstructions (ghosting around dynamic parts; for
example, the tip of the elephant’s trunk or fish’s tail); and (iii) our LIM-based interpolation, which yields the most plausible results.

timestep k, we first split the frame sets into adjacent triplets
Ik, Ik+1, Ik+2 for a k-th triplet. In each triplet, we then
evaluate the ability of a method to interpolate the 3D repre-
sentation T̂k+1 at the mid-point k + 1 given the boundary
frames Ik, Ik+2. Note that, since the frames are sampled at
uniform time intervals, the continuous interpolation index
is α = 0.5. For evaluation, we select 256 scenes from our
heldout dataset of animated objects.

Given the interpolant T̂k+1, we then evaluate its quality
by rendering into the set of (novel) evaluation views, and re-
porting three photometric errors measuring the discrepancy
between the renders and the corresponding ground-truth im-
ages: (i) peak signal-to-noise ratio PSNR; (ii) perceptual
loss LPIPS [65]; and (iii) PSNRFG calculating PSNR only
over the foreground pixels.

Baselines. We compare our LIM interpolation with two
baselines. The first baseline (Linear) is a simple linear in-
terpolation, which defines the interpolated triplane T̂ linear

k+1 =
(1 − α)Tk + αTk+2 as a linear combination of the two tri-

Table 1. Interpolation results comparing LIM to a linear triplane
interpolation, and to an image-based interpolation implemented
with the FiLM image interpolator [41].

PSNR ↑ PSNRFG ↑ LPIPS ↓

Linear 20.96 11.04 0.093
FILM [41] 22.05 14.98 0.082
LIM (Our) 23.11 16.12 0.075

Oracle 24.43 17.51 0.064

planes predicted by LRM for each set of boundary frames.
The second baseline (FILM) is image-based. Specifically,
we first interpolate in the image-space using a pre-trained
deep image interpolator FILM [41] which, given the bound-
ary views Iik, I

i
k+2, generates the interpolant Îik+1 followed

by multi-view LRM reconstruction yielding the interpo-
lated triplane T̂ FILM

k+1 . We also report results from an Or-
acle method, which has access to the ground-truth images
Ik+1 and reconstructs the corresponding triplane T̂ Oracle

k+1

with LRM. The latter provides an upper performance limit.

Results. Tab. 1 presents the results. We also provide Fig. 4
and a supplemental video for visual evaluation. LIM out-
performs linear interpolation and image-based interpolation
on all three metrics. Here, we notice that linear interpo-
lation in the triplane space fails to correctly represent dy-
namic elements, which often disappear after being interpo-
lated. Furthermore, the image-based interpolation often re-
sults in artifacts in the color and opacity fields, which is due
to view-inconsistencies between the images interpolated at
the same timestep. LIM scores closest to the Oracle bound.

Ablating causal consistency. Table 2 reports the perfor-
mance of a LIM trained without the causal consistency
loss Lcausal on the aforemention benchmark. The evalua-
tion reveals a significant drop in performance, confirming
the merit of the causal loss. See supplementary material.

4.2. Deformable Mesh Reconstruction
In this section, we evaluate the quality of the dynamic
mesh reconstructions output by LIM’s mesh-tracing method
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Figure 5. Mesh Tracking results. Given two implicit 3D representations, LIM can interpolate densely in time and hence can track a
source mesh to produce a deforming mesh sequence. For each scene, we show (top to bottom) RGB rendering of the tracked mesh, depth
and canonical-coordinate interpolation. See supplemental video on the project page.

Table 2. Ablating Lcausal. Interpolation accuracy comparing our
LIM with its ablation removing the causal consistency loss Lcausal.

PSNR ↑ PSNRFG ↑ LPIPS ↓
LIM- wo/ Lcausal 22.2 15.38 0.084

LIM 23.11 16.12 0.075

(Sec. 3.4). More specifically, we create a dataset of 8-
step test sequences heldout from the train set. As before,
the k-th timestep of the 8 timesteps contains a frame set

Table 3. Evaluation of deformable mesh tracking comparing
our LIM with Nearest-Neighbor tracing

PSNR ↑ PSNRFG ↑ LPIPS ↓
NN-tracing 20.33 16.09 0.122
LIM (Our) 21.56 17.11 0.096

Ik. First, we reconstruct a mesh in the canonical pose,
defined as the shape at the first frame (k = 1). We then
use our mesh-tracing method to deform the vertices of the
mesh so they follow the motion observed in the frame sets
Ik, k ∈ [2, . . . , 8]. Note that we keep the topology of
the first-frame mesh, as well as its texture shared across
all 8 timesteps. After the mesh is traced, we render it at
timesteps {4, 6, 8} to several heldout views and again eval-
uate the PSNR, LPIPS, and PSNRFG. We compare our LIM
mesh tracing, described in Sec. 3.4, with a baseline (Nearest
Matching) that iteratively deform the vertices of the mesh at
timestep i to the nearest match on the surface of the mesh
at timestep i + 1, where the matching is performed over
distance and RGB-features.

Results. Tab. 3 present the quantitative results. Our main
observation is that LIM’s ability to densely and accurately
interpolate RGB and XYZ values over time, allows one
to avoid explicitly solving the challenging correspondence
problem between keyframed poses, separated by non-trivial
deformations. Our evaluations show that LIM works well

https://remysabathier.github.io/lim.github.io/


Input video Consistent4D TripoSR Our

Figure 6. Monocular 4D Reconstruction comparing LIM with Consistent4D and TripoSR applied to each input frame separately. Our
method is the only one to output a time-deforming mesh with fixed topology and texture. For our method, we render the topology for the
second view.

overall, although the results degrade around thin structures.
Additional results are available at the project page.

4.3. 4D Reconstruction
Finally, we evaluate LIM on 4D reconstruction from a
monocular video.

For each evaluation scene, we extract a video sequence
of 16 frames {I1k}16k=1. We then leverage an external
diffusion-based model to generate 3 additional views of the
scene {Îik}k∈[1,...,16],i∈{2,3,4} for each timestep. We then
reconstruct the 3D representation on the odd frames with
LRM and interpolate with our LIM to predict the repre-
sentation on the even frames. We evaluate on all the even
frames, on a set of four random views, outside the training
views. We report two metrics: the LPIPS error between the
ground-truth images and the renders of the reconstructed tri-
planes, and the FVD [51] measuring comparing generated
new-view sequence against ground-truth temporal sequence
of renders.

Baselines. We compare two baselines: (i) Consis-
tent4D [18], an optimization-based model, conditioned on
monocular video and supervised via SDS loss; (ii) Tri-
poSR [50], an open-source LRM conditioned on a single
image, i.e., the model is at a disadvantage.

Results. Evaluation results are in Tab. 4. The combination
of LIM with multi-view diffusion model outperforms the
competing methods by a significant margin.

5. Conclusion
We have proposed LIM, a novel method paired with multi-
view LRM to enable continuous and feed-forward render-

Table 4. Monocular video reconstruction results comparing our
LIM to Consistent4D [18] and to TripoSR [50] applied indepen-
dently to each frame of the input video.

Feed-fwd. Inf. Time LPIPS ↓ FVD ↓

Consistent4D [18] é ∼1.5hours 0.429 1136.3
TripoSR [50] Ë ∼30secs 0.504 1427.2
LIM (Ours) Ë ∼3min 0.142 811.1

ing in both space and time. As opposed to image-based
interpolators or direct triplane baselines, we demonstrated
that LIM results in high-quality and consistent 4D interpo-
lations, realistically capturing deformations, and can sup-
port different type of modalities. A key advantage of ours is
that we can interpolate in RGB and (canonical) XYZ, which
in turn allows to directly output consistently-textured dy-
namic mesh assets that applicable in production workflows.

A key limitation of our approach is it being trained on
synthetic data. Since LIM learns to interpolate deforma-
tion/motion, rather than appearance, we expect the results
to carry over to real data. However, we would need an
LRM model trained on real-world data to test this hypothe-
sis. We leave this for later exploration. Also, in the future,
we would like to extend our framework to handle extrapo-
lation, instead of interpolation. The challenge would be to
effectively use video data and video generators for training.
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LIM: Large Interpolator Model for Dynamic Reconstruction

Supplementary Material

Figure 7. LIM training losses. (Left) The triplane MSE loss LT only supervises LIM on keyframes km. (Right) The causal consistency
loss Lcausal samples in-between keyframes with an additional forward-pass to LIM. Note that the second pass of LIM takes as input the
intermediate features from LIM instead of the intermediate features from LRM.

A. Additional Evaluations
We recommend looking at the project page
[https://remysabathier.github.io/lim.github.io], to see
the video results. In particular, the webpage contains video
result of RGB interpolation, XYZ canonical tracking,
monocular reconstruction and mesh reconstruction.

Evaluation on OOD data We provide qualitative results
on the Consistent4D eval set, which includes real-world
scenes, in Table 5.

B. Additional Method Insights
Weight Initialization. The composition of blocks in LIM
and LRM is presented in Fig. 2. We initialize LIM with
LRM to take advantage of the learned 3D intermediate
representation. More specifically, the intermediate-features
cross-attention layers are derived from the self-attention
layers from LRM. Furthermore, the image cross-attention
layers are initialized using the image cross-attention layers
from LRM, and the self-attention layers are initialized from
the self-attention layer of LRM. Initialization is similar for
LRM and LIM (presented in Fig. 9).

Model size. We ablate the choice of the number of layers
in Tab. 6. We observe that LIM accuracy is proportional to
the number of blocks in the architecture. However, adding
more blocks in LIM slows down the interpolation. We set
Nlayer = 6 as a good trade-off between speed and accuracy.

Dataset details Our 3D dataset includes 142,123 assets,
while the 4D dataset comprises 6,052 rigged models, each

with 16 to 128 keyframes. We render the keyframes using
Blender and the Cycles engine.

Figure 8. Causal-loss ablation. We show triplane interpolation
result from LIM models trained either with the triplane MSE loss
LT only, or with both LT and the causal-consistency loss Lcausal.

Table 5. Monocular reconstruction (out of distribution OOD).

Inf. Time Consistent4D set

LPIPS FVD

Consistent4D ∼90 min 0.428 1134.7
TripoSR ∼0.5 min 0.497 1428.2

LIM (Our) ∼3 min 0.114 781.9

https://remysabathier.github.io/lim.github.io/


Figure 9. LIM framework. (Left) Given multi-view RGB images on 2 timesteps k and k + 1 and XYZ canonical renders on timestep k,
LIM interpolates any intermediate 3D representation of the XYZ canonical coordinate at k + α, α ∈ [0, 1]. This gives direct correspon-
dences in 3D space between the source shape at k and the interpolated shape at k + α. In practice, our LIM architecture has 6 blocks and
LRM 12 blocks. (Right) Block structure of LRM and LIM. We include layer normalization before each module in blocks.

PSNR ↑ PSNRFG ↑ LPIPS ↓
LIM- 3 layers 22.35 14.56 0.079
LIM- 8 layers 23.19 16.2 0.075

LIM 23.11 16.12 0.075

Table 6. Performance as a function of # layers reporting interpo-
lation accuracy of LIM while varying the number of transformer
blocks in the architecture.

Causal consistency loss. We illustrate in Fig. 7 the behav-
ior of the triplane MSE loss LT and the causal-consistency
loss Lcausal (see Sec. 3). LT involves a single pass of LIM
and two passes of LRM, while Lcausal involves 2 passes of
LRM and 2 passes of LIM. Note that during LIM training,
the weights of LRM are frozen. In practice, we discovered
that the causal consistency loss was essential to achieve pre-
cise and accurate interpolation over a range of shapes and
motions. We show interpolation results (in the same setting
as Sec. 4.1) in Fig. 8, with a LIM model trained either with
Lcausal activated or deactivated.

Positional Encoding We apply positional encoding to the
interpolation time α ∈ [0, 1] with ϕ : R → R2D, such
that ∀i ∈ [1, D], ϕ(α)[2i] = cos(αf2i);ϕ(α)[2i + 1] =
sin(αf2i+1), and fi = exp[− log 10.000

D .i]; we set D = 512
so that 2D matches the LRM embedding dimension.

4D reconstruction with ARAP regularization . We ob-
serve that our mesh-tracking framework can incorporate
ARAP regularization to mitigate issues like triangle inver-
sion or self-intersection. Instead of relying solely on direct
matching through nearest neighbor search in the space of
canonical coordinates (refer to Section Sec. 3.4), we imple-
ment a concise optimization loop. This loop incorporates
both canonical-coordinate matching and ARAP energy as
objectives to minimize.
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